

Carbohydrate Research 261 (1994) 215-222

Structure of the O83-specific polysaccharide of *Escherichia coli* O83: K24: H31

Barbara Jann ^a, Alexander S. Shashkov ^b, Michael Hahne ^a, Helga Kochanowski ^a, Klaus Jann ^{a,*}

^a Max-Planck-Institut für Immunbiologie, Stübeweg 51, Freiburg, D-79108 Germany ^b Zelinsky Institute for Organic Chemistry, Moscow, Russian Federation

Received January 20th, 1994; accepted March 29th, 1994

Abstract

The polysaccharide moiety of the O83 antigen (lipopolysaccharide, LPS) consists of p-glucose, p-galactose, 2-acetamido-2-deoxy-p-glucose, and p-glucuronic acid in the molar ratios 1:2:1:1. Methylation analysis of the polysaccharide and derived oligosaccharides as well as one- and two-dimensional ¹H and ¹³C NMR spectroscopy of the polysaccharide at pD 1 and 6 showed that the O83 polysaccharide has the primary structure

 \rightarrow 6)- α -D-Glc p-(1 \rightarrow 4)- β -D-Glc pA-(1 \rightarrow 6)- β -D-Gal p-(1 \rightarrow 4)- β -D-Gal p-(1 \rightarrow 4)- β -D-Glc pNAc-(1 \rightarrow

Key words: E. Coli, O83 antigen; Polysaccharide structure; NMR spectroscopy

1. Introduction

Escherichia coli O83: K24: H31 is a frequent cause of sepsis and pyelonephritis [1]. There are two strains expressing different forms of the O83 antigen (LPS), E. coli H17a with an O83-specific polysaccharide of normal size distribution, as observed by SDS-PAGE, and E. coli H45 with a short O83-specific oligosaccharide (maximally four repeating units, as observed by SDS-PAGE). E. coli H17a with the normal-sized LPS, the O83 test strain, is serum resistant, and E. coli H45 with the short chain LPS, the K24 test strain, is serum sensitive (Ørskov, personal

^{*} Corresponding author.

communication). Thus, serum resistance, an important virulence property [2], can be critically dependent on the nature of the LPS, irrespective of the presence of a capsule. In this communication we present the chemical analysis of the long chain O83 LPS and the structure of its repeating unit.

2. Results and discussion

Isolation and characterization of the O83-specific polysaccharide.—E. coli H17a, after growth in liquid culture, was extracted with 45% aqueous phenol and the aqueous phase was subjected to ultracentrifugation [3]. The sediment contained an LPS fraction (LPS I) that consisted of short-chain LPS and R-LPS. The supernatant solution contained an LPS (LPS II) that was isolated by fractional precipitation with cetyltrimethylammonium bromide (CTAB) [3,4]. LPS II, which had a long O-specific polysaccharide chain, was used for further structural studies.

LPS II was subjected to mild acid hydrolysis, the lipid A moiety was removed by centrifugation, and the polysaccharide was purified by gel permeation chromatography. The polysaccharide contained glucose (D-Glc), galactose, (D-Gal), N-acetylglucosamine (D-GlcNac), and glucuronic acid (D-GlcA) in the molar ratios 1:2:1:1. Periodate oxidation destroyed all sugar constituents, with the exception of GlcNAc.

The 13 C NMR spectrum of the O83 polysaccharide (Fig. 1) contained five signals in the anomeric region. Chemical shift values and the results of a gated decoupling experiment at 300 MHz showed that the signal at δ 99.1 ($^{1}J_{C,H}$ 172 Hz)

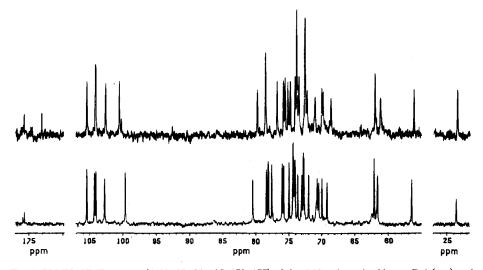


Fig. 1. 75 MHz NMR spectra (δ 22–27; 55–107; 170–177) of the O83 polysaccharide at pD 1 (top) and pD 6 (bottom), recorded in D₂O (80°C) with acetone (δ _C 31.45) as internal standard.

was from a residue having the α configuration and that the other residues were β (δ 102.6, 104.1, 104.15, and 105.4 with $^1J_{C,H}$ 161–163 Hz). Signals at δ 56.2, 175.7, and 23.5 indicated the presence of an amino sugar with a CH-NHCOCH₃ group. An APT spectrum [5] indicated that two hydroxymethyl groups were substituted (signals at δ 69.0 and 70.65 at pD 6). The repeating units also contained a uronic acid, as evidenced by the signal of the -COOH group (δ 176.0 at pD 6 and 173.1 at pD 1).

Methylation analysis.—The polysaccharide was methylated [6] with KH-MeI in Me₂SO. The purified (Sep-Pak C₁₈) product was hydrolysed [7], reduced with sodium borodeuteride, and per-O-acetylated, and the resulting partially methylated alditol acetates were characterized by GLC-MS. In another experiment, the carboxyl groups of GlcA were reduced in the intact polysaccharide [8] before the methylation analysis. The results indicated that the O83 polysaccharide contained one residue each of 6-linked Glc, 6-linked Gal, 4-linked Gal, 4-linked GlcA, and 4-linked GlcNAc. These data show that the O83 polysaccharide contains an unbranched sequence of 4- and 6-linked sugar units.

Two disaccharides, one trisaccharide and one tetrasaccharide were obtained by partial acid hydrolysis (1 M trifluoroacetic acid, 100° C, 30 min) and isolated by high voltage paper electrophoresis (42 V/cm, pH 5.4, 60 min at 10° C). With the exception of the tetrasaccharide they were reduced with sodium borodeuteride, methylated, and subjected to MS. The mass spectra showed that they can be formulated as HexA- $(1 \rightarrow 6)$ -Hex, Hex- $(1 \rightarrow 4)$ -HexNAc, and HexA- $(1 \rightarrow 6)$ -Hex- $(1 \rightarrow 4)$ -Hex. The fragmentation pattern of the deutero-reduced and methylated trisaccharide is shown in Fig. 2. The reduced tetrasaccharide was subjected to the usual methylation analysis. GLC-MS revealed the presence of 1-deutero-4-O-acetyl-1,2,3,5,6-penta-O-methylgalactitol, 1,5-di-O-acetyl-2,3,4,6-tetra-O-methylgalactitol, and 1,5,6-tri-O-acetyl-2,3,4-tri-O-methyl glucitol in approximately equal amounts. The data showed that the tetrasaccharide has the structure Hex- $(1 \rightarrow 4)$ -HexA- $(1 \rightarrow 6)$ -Hex $(1 \rightarrow 4)$ -Hex.

NMR analysis.—The ¹H-NMR spectrum of the O83 polysaccharide at pD 6 (Fig. 3) contained four signals of sugars with the β -gluco/galacto configuration ($J_{1,2}$ 7.5-8.0 Hz) and one signal of a sugar with the α -gluco/galacto configuration. Assignments of the signals (Table 1) were obtained with a sequential selective spin

Fig. 2. Structure and mass-spectrometric fragmentation pattern of the reduced and methylated trisaccharide, obtained from the O83 polysaccharide by partial and hydrolysis.

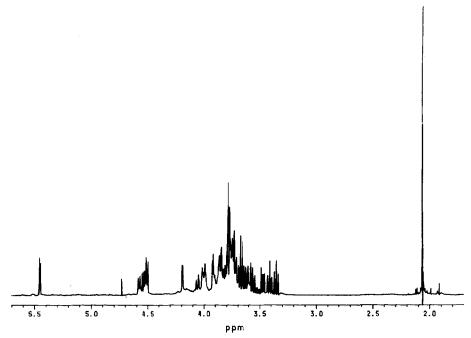


Fig. 3. 500-MHz NMR spectrum of the O83 polysaccharide at pD 6, recorded in D_2O (80°C) with acetone (δ_H 2.225) as internal standard.

decoupling procedure [9], 2D-COSY, and one- and two-step relayed coherence transfer COSY [10,11].

Attempts to analyse the sequence of the sugar residues with a 2D-ROESY spectrum [12] failed, due to the overlap of signals (at 300 and 500 MHz). The only information available from this experiment was a cross-peak between H-1 of one galactose (residue C) and H-4 of the second galactose unit in the polysaccharide (residue D), indicative of a Gal- $(1 \rightarrow 4)$ -Gal sequence. In a 1D-NOE experiment at pD 1 (Fig. 4), preirradiation of the anomeric proton of the glucose residue (residue A) resulted in a response at H-4 of glucuronic acid (residue B). This interaction is only possible with α glucose as a glycosylating sugar for the glucuronic acid residue. It also explains the pD dependence of the chemical shift for the anomeric carbon of α glucose in the ¹³C NMR spectrum as due to close steriochemical apposition. To analyze the sequence position of GlcNAc in the polysaccharide, a 1D-NOE experiment was performed in which the methyl protons of the Nacetamido group were preirradiated (Fig. 5). An intraring long-range interaction between the methyl protons and H-1, H-2, and H-3 of GlcNAc (residue E) as well as an interring interaction with H-4 of the glucose residue (residue A) were detected. The H-Me (E) \rightarrow H-4 (A) interaction is only possible in the configuration given by a E- $(1 \rightarrow 6)$ -A linkage.

The signals of the ¹³C NMR spectrum were assigned (Table 1) with a 2D heteronuclear COSY spectrum (Fig. 6). The absolute configurations of all sugar

Table 1 ¹H NMR and ¹³C NMR data for the O83 polysaccharide ^a

Residue	Chemical shifts (δ/ppm) and coupling constants (Hz)								$^{1}J_{\mathrm{C,H}}$
		pD 6	pD 1	³ J _{H,H}	Hz		pD 6	pD 1	
→ 6)-α-D-Glc p-(1 →	H-1	5.45	5.41	J _{1,2}	3	C-1	99.1	100.5	172
	H-2	3.47	3.53	$J_{2,3}^{-,-}$	10	C-2	72.8	72.55	
A	H-3	3.67	3.64	$J_{3,4}^{-,-}$	10	C-3	74.0	73.9	
	H-4	3.42	3.42	$J_{4,5}$	10	C-4	70.6	70.0	
	H-5	3.75	3.71	$J_{5,6}$	≤ 2	C-5	71.8	72.25	
	H-6	4.06	4.05	$J_{6,6'}$	11	C-6	69.0	68.6	
	H-6'	3.84	3.89	$J_{5,6'}$	6				
\rightarrow 4)- β -D-Glc p A-(1 \rightarrow	H-1	4.505	4.61	$J_{1,2}$	< 8	C-1	104.2	104.15	161
	H-2	3.35	3.41	$J_{2.3}$	9	C-2	74.3	73.9	
В	H-3	3.74	3.80	$J_{3,4}^{-}$	10	C-3	77.8	76.8	$(+0.8)^{b}$
	H-4	3.76	3.86	$J_{4,5}$	10	C-4	78.0	78.55	
	H-5	3.79	4.12	,,,,		C-5	77.55	75.2	
						C-6	176.0	173.1	
\rightarrow 6)- β -D-Gal p -(1 \rightarrow	H-1	4.58	4.59	$J_{1.2}$	7.5	C-1	105.3	105.4	163
	H-2	3.56	3.59	$J_{2,3}$	10	C-2	72.6	72.6	
С	H-3	3.67	3.69	$J_{3,4}$	4	C-3	73.9	73.5	
	H-4	3.92	3.92	$J_{4.5}$	< 2	C-4	69.8	69.8	
	H-5	3.86	3.81	,-		C-5	74.8	74.1	
	H-6,6'	~ 3.78	~ 3.85			C-6	70.65	71.0	
\rightarrow 4)- β -D-Gal p -(1 \rightarrow	H-1	4.52	4.53	$J_{1,2}$	7. 5	C-1	104.0	104.1	163
	H-2	3.62	3.64	$J_{2,3}$	10	C-2	72.5	72.5	
D	H-3	3.80	3.82	$J_{3,4}$	4	C-3	74.2	73.9	
	H-4	4.19	4.19	$J_{4,5}$	< 2	C-4	78.3	78.5	
	H-5	3.80	3.81	ŕ		C-5	75.7	75.6	
	H-6	4.00	4.01			C-6	62.0	62.0	$(-0.2)^{b}$
	H-6'	3.85	3.87						
\rightarrow 4)- β -D-Glc pNAc-(1 \rightarrow	H-1	4.54	4.56	$J_{1,2}$	8	C-1	102.7	102.6	163
	H-2	2 75	3.77	$J_{2,3}^{-7}$	9	C-2	56.3	56.2	
Е	H-3	3.75	3.84	$J_{3,4}^{2,3}$	9	C-3	73.55	74.8	$(-1.5)^{b}$
	H-4	3.72	3.71	$J_{4,5}^{5,7}$	9	C-4	80.2	79.8	
	H-5	3.60	3.60	$J_{5.6}^{-7.5}$	< 2	C-5	75.9	75.9	
	H-6	4.00	4.01	$J_{6,6}^{5,0}$	11	C-6	61.4	61.2	
	H-6'	3.86	3.83	$J_{5,6'}^{0,0}$	3	-NA	c 23.5	23.5	
				3,0			175.7	175.7	

^a Recorded in D_2O (30°C), with acetone (δ_H 2.225; δ_C 31.45) as internal standard.

units were determined as D by calculating the experimental glycosylation effects [13,14] (Table 1), with D-glucose (residue A) as a basis, the configuration of which was proved by its reactivity with D-glucose oxidase.

The results obtained, which are corroborated by those of the methylation analysis, permit the formulation of the O83 polysaccharide as

^b Glycosylation effects (at pD 6).

A B C D E $\rightarrow 6)-\alpha-D-Glcp-(1\rightarrow 4)-\beta-D-GlcpA-(1\rightarrow 6)-\beta-D-Galp-(1\rightarrow 4)-\beta-D-Galp-(1\rightarrow 4)-\beta-D-GlcpNAc-(1\rightarrow 6)-\beta-D-Galp-(1\rightarrow 4)-\beta-D-GlcpNAc-(1\rightarrow 6)-\beta-D-Galp-(1\rightarrow 4)-\beta-D-GlcpNAc-(1\rightarrow 6)-\beta-D-Galp-(1\rightarrow 6)-\beta-D$

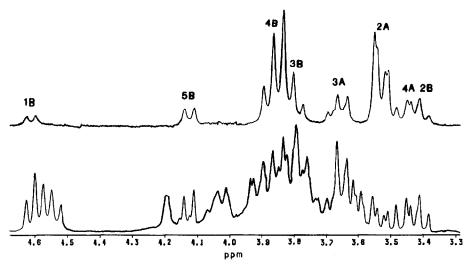


Fig. 4. 300-MHz spectrum (δ 3.3-4.7) of the O83 polysaccharide at pD 1 (bottom) and the NOE difference spectrum (top) after preirradiation of the anomeric proton (δ 5.41) of α -Glc p (residue A). Small signals of protons A-3 and A-4, and of protons 1, 2, 3, and 5 of β -Glc pA (residue B) are due to spin diffusion.

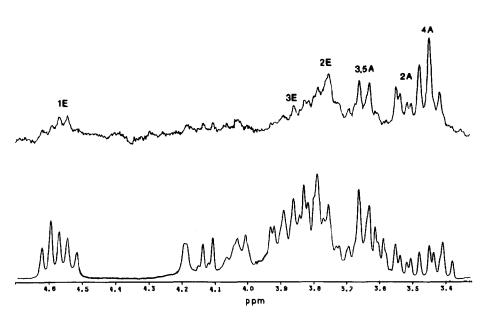


Fig. 5. 300-MHz spectrum (δ 3.3-4.7) of the O83 polysaccharide at pD 1 (bottom) and the NOE difference spectrum (top) after preirradiation of the methyl protons of the N-acetyl group of β -Glc pNAc (residue E). Note the strong interring response with H-4 of α -Glcp (residue A).

3. Experimental

Bacteria and cultivation.—E. coli strain H17a (O83:K24.H31) was grown at 37°C to the late logarithmic phase in a fermenter in 10-L batches of standard I broth (Merck).

Isolation of the polysaccharide.—The bacteria were extracted with 45% aq phenol and the dialyzed aqueous phase was subjected to ultracentrifugation [3]. From the supernatant solution, the O83 polysaccharide was obtained by fractional precipitation with CTAB [4] and the complex precipitated was converted into the sodium salt as described [4].

Methylation.—The O83 polysaccharide was methylated [6] with KH-MeI in Me₂SO. The purified (Sep-Pak C₁₈) product was hydrolysed [7] and the constituents were characterised by GLC-MS as their partially methylated alditol acetates. Oligosaccharides, obtained by partial hydrolysis (1 M CF₃CO₂H, 100°C, 30 min) were reduced with NaBD₄ before methylation and, after purification, methylated and analyzed in GLC-MS with and without hydrolysis.

Analytical methods.—Glucose, galactose, and glucosamine were determined as their alditol acetates by GLC and with the Elson-Morgan reaction [15], respectively. Glucuronic acid was determined with the carbazole reagent. The absolute

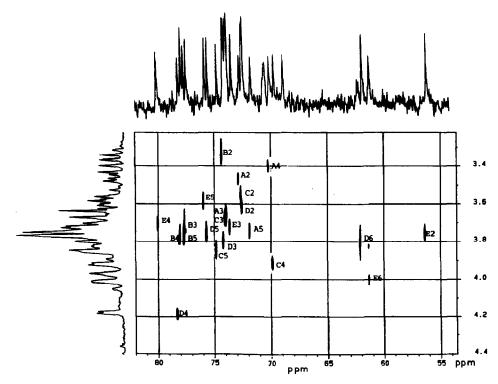


Fig. 6. 2D 300-MHz heteronuclear ¹³C/ ¹H COSY spectrum of the O83 polysaccharide at pD 6.

configuration of glucose was determined with D-glucose oxidase. The periodate oxidation has been described [16]. GLC-MS was carried out with a Hewlett-Packard 5988A instrument, using a DB1 capillary column (0.25 mm \times 30 m) with He as carrier gas and a temperature program of 50 \rightarrow 180°C at 70°C/min and then 180 \rightarrow 250°C at 5°C/min. EI mass spectra were obtained with an ionising energy of 70 eV. NMR spectra were recorded with Bruker AM 300 and AM 500 instruments with acetone as internal standard ($\delta_{\rm H}$ 2.225; $\delta_{\rm C}$ 31.45). Standard Bruker software was used for homonuclear 1 H, 1 H COSY (COSYHG); one- and two-step 1 H-relayed homonuclear 2D 1 H, 1 H COSY (COSYRCT and COSYRCT2); and 1 H, 13 C heteronuclear 2D COSY (XHCORRD). The 1D NOE experiment was performed in the truncated driven (TOE) mode [17] with the Bruker NOEMULT program and the 2D ROESY spectrum was acquired with the Rance pulse sequence [18] with a spin lock time of 0.2 s.

Acknowledgments

We thank Mr. D. Borowiak for obtaining the mass spectra. This work was supported by the Deutsche Forschungsgemeinschaft and by grant no. 93-03-5839 of the Russian Foundation in Fundamental Sciences.

References

- [1] I. Ørskov, F. Ørskov, B. Jann, and K. Jann, Bacteriol. Rev., 41 (1977) 667-710.
- [2] K.A. Joiner, Curr. Top. Microbiol. Immunol., 121 (1985) 99-113.
- [3] O. Westphal and K. Jann, Methods Carbohydr. Chem., 5 (1965) 83-91.
- [4] W.F. Vann and K. Jann, Infect. Immun., 25 (1979) 85-92.
- [5] S.L. Patt and J.N. Schoolery, J. Magn. Reson., 46 (1982) 535-539.
- [6] K.R. Phillips and B.A. Frazer, Carbohydr. Res., 90 (1981) 149-152.
- [7] S. Hakomori, J. Biochem. (Tokyo), 55 (1964) 205-208.
- [8] R. Taylor, J. Shively and H. Conrad, Methods Carbohydr. Chem., 7 (1979) 149-151.
- [9] N.A. Kocharova, Y.A. Knirel, A.S. Shashkov, N.K. Kochetkov, and G.B. Pier, J. Biol. Chem., 263 (1988) 11291-11295.
- [10] J. Jeener, B.H. Meier, P. Bachmann, and R.R. Ernst, J. Chem. Phys., 71 (1979) 4546-4553.
- [11] J. Dabrowski, Methods Stereochem. Anal., 9 (1987) 349-386.
- [12] D. Morrison and K. Wüthrich, Biochem. Biophys. Res. Commun., 113 (1983) 967-970.
- [13] G.M. Lipkind, A.S. Shashkov, Y.A. Knirel, E.V. Vinogradov, and N.K. Kochetkov, Carbohydr. Res., 175 (1988) 59-75.
- [14] G.M. Lipkind, A.S. Shashkov, S.S. Mamyan, and N.K. Kochetkov, *Carbohydr. Res.*, 181 (1988) 1-12.
- [15] J.L. Strominger, J.T. Park, and J. Thompson, J. Biol. Chem., 234 (1959) 3263-3271.
- [16] P. Hofmann, B. Jann, and K. Jann, Eur. J. Biochem. 147 (1985) 601-609.
- [17] G. Wagner and K. Wüthrich, J. Magn. Reson., 33 (1979) 675-680.
- [18] M. Rance, J. Magn. Reson., 74 (1987) 557-564.